16 research outputs found

    Modelling and automated calibration of a general multi-projective camera

    Get PDF
    Recently, multi-projective cameras (MPCs), often based on frame-mounted multiple cameras with a small baseline and arbitrary overlap, have found a remarkable place in geomatics and vision-based applications. This paper outlines the geometric calibration of a general MPC by presenting a mathematical model that describes its unknown generic geometry. A modified bundle block adjustment is employed to calibrate an industrial-level 360° non-metric camera. The structure of any MPC can be retrieved as a calibration set of relative and interior orientation parameters (as well as the pose of the MPC shots) using a calibration room which has been accurately determined by close range photogrammetry. To demonstrate the efficiency and precision of the model, a Panono camera (an MPC with 36 individual cameras) was calibrated. After the adjustment, sub-pixel image residuals and acceptable object-space errors were observed.Peer reviewe

    Multi-Projective Camera-Calibration, Modeling, and Integration in Mobile-Mapping Systems

    Get PDF
    Optical systems are vital parts of most modern systems such as mobile mapping systems, autonomous cars, unmanned aerial vehicles (UAV), and game consoles. Multi-camera systems (MCS) are commonly employed for precise mapping including aerial and close-range applications. In the first part of this thesis a simple and practical calibration model and a calibration scheme for multi-projective cameras (MPC) is presented. The calibration scheme is enabled by implementing a camera test field equipped with a customized coded target as FGI’s camera calibration room. The first hypothesis was that a test field is necessary to calibrate an MPC. Two commercially available MPCs with 6 and 36 cameras were successfully calibrated in FGI’s calibration room. The calibration results suggest that the proposed model is able to estimate parameters of the MPCs with high geometric accuracy, and reveals the internal structure of the MPCs. In the second part, the applicability of an MPC calibrated by the proposed approach was investigated in a mobile mapping system (MMS). The second hypothesis was that a system calibration is necessary to achieve high geometric accuracies in a multi-camera MMS. The MPC model was updated to consider mounting parameters with respect to GNSS and IMU. A system calibration scheme for an MMS was proposed. The results showed that the proposed system calibration approach was able to produce accurate results by direct georeferencing of multi-images in an MMS. Results of geometric assessments suggested that a centimeter-level accuracy is achievable by employing the proposed approach. A novel correspondence map is demonstrated for MPCs that helps to create metric panoramas. In the third part, the problem of real-time trajectory estimation of a UAV equipped with a projective camera was studied. The main objective of this part was to address the problem of real-time monocular simultaneous localization and mapping (SLAM) of a UAV. An angular framework was discussed to address the gimbal lock singular situation. The results suggest that the proposed solution is an effective and rigorous monocular SLAM for aerial cases where the object is near-planar. In the last part, the problem of tree-species classification by a UAV equipped with two hyper-spectral an RGB cameras was studied. The objective of this study was to investigate different aspects of a precise tree-species classification problem by employing state-of-art methods. A 3D convolutional neural-network (3D-CNN) and a multi-layered perceptron (MLP) were proposed and compared. Both classifiers were highly successful in their tasks, while the 3D-CNN was superior in performance. The classification result was the most accurate results published in comparison to other works.Optiset kuvauslaitteet ovat keskeisessä roolissa moderneissa konenäköön perustuvissa järjestelmissä kuten autonomiset autot, miehittämättömät lentolaitteet (UAV) ja pelikonsolit. Tällaisissa sovelluksissa hyödynnetään tyypillisesti monikamerajärjestelmiä. Väitöskirjan ensimmäisessä osassa kehitetään yksinkertainen ja käytännöllinen matemaattinen malli ja kalibrointimenetelmä monikamerajärjestelmille. Koodatut kohteet ovat keinotekoisia kuvia, joita voidaan tulostaa esimerkiksi A4-paperiarkeille ja jotka voidaan mitata automaattisesti tietokonealgoritmeillä. Matemaattinen malli määritetään hyödyntämällä 3-ulotteista kamerakalibrointihuonetta, johon kehitetyt koodatut kohteet asennetaan. Kaksi kaupallista monikamerajärjestelmää, jotka muodostuvat 6 ja 36 erillisestä kamerasta, kalibroitiin onnistuneesti ehdotetulla menetelmällä. Tulokset osoittivat, että menetelmä tuotti tarkat estimaatit monikamerajärjestelmän geometrisille parametreille ja että estimoidut parametrit vastasivat hyvin kameran sisäistä rakennetta. Työn toisessa osassa tutkittiin ehdotetulla menetelmällä kalibroidun monikamerajärjestelmän mittauskäyttöä liikkuvassa kartoitusjärjestelmässä (MMS). Tavoitteena oli kehittää ja tutkia korkean geometrisen tarkkuuden kartoitusmittauksia. Monikameramallia laajennettiin navigointilaitteiston paikannus ja kallistussensoreihin (GNSS/IMU) liittyvillä parametreillä ja ehdotettiin järjestelmäkalibrointimenetelmää liikkuvalle kartoitusjärjestelmälle. Kalibroidulla järjestelmällä saavutettiin senttimetritarkkuus suorapaikannusmittauksissa. Työssä myös esitettiin monikuville vastaavuuskartta, joka mahdollistaa metristen panoraamojen luonnin monikamarajärjestelmän kuvista. Kolmannessa osassa tutkittiin UAV:​​n liikeradan reaaliaikaista estimointia hyödyntäen yhteen kameraan perustuvaa menetelmää. Päätavoitteena oli kehittää monokulaariseen kuvaamiseen perustuva reaaliaikaisen samanaikaisen paikannuksen ja kartoituksen (SLAM) menetelmä. Työssä ehdotettiin moniresoluutioisiin kuvapyramideihin ja eteneviin suorakulmaisiin alueisiin perustuvaa sovitusmenetelmää. Ehdotetulla lähestymistavalla pystyttiin alentamaan yhteensovittamisen kustannuksia sovituksen tarkkuuden säilyessä muuttumattomana. Kardaanilukko (gimbal lock) tilanteen käsittelemiseksi toteutettiin uusi kulmajärjestelmä. Tulokset osoittivat, että ehdotettu ratkaisu oli tehokas ja tarkka tilanteissa joissa kohde on lähes tasomainen. Suorituskyvyn arviointi osoitti, että kehitetty menetelmä täytti UAV:n reaaliaikaiselle reitinestimoinnille annetut aika- ja tarkkuustavoitteet. Työn viimeisessä osassa tutkittiin puulajiluokitusta käyttäen hyperspektri- ja RGB-kameralla varustettua UAV-järjestelmää. Tavoitteena oli tutkia uusien koneoppimismenetelmien käyttöä tarkassa puulajiluokituksessa ja lisäksi vertailla hyperspektri ja RGB-aineistojen suorituskykyä. Työssä verrattiin 3D-konvoluutiohermoverkkoa (3D-CNN) ja monikerroksista perceptronia (MLP). Molemmat luokittelijat tuottivat hyvän luokittelutarkkuuden, mutta 3D-CNN tuotti tarkimmat tulokset. Saavutettu tarkkuus oli parempi kuin aikaisemmat julkaistut tulokset vastaavilla aineistoilla. Hyperspektrisen ja RGB-datan yhdistelmä tuotti parhaan tarkkuuden, mutta myös RGB-kamera yksin tuotti tarkan tuloksen ja on edullinen ja tehokas aineisto monille luokittelusovelluksille

    An Image-Based Real-Time Georeferencing Scheme for a UAV Based on a New Angular Parametrization

    Get PDF
    Simultaneous localization and mapping (SLAM) of a monocular projective camera installed on an unmanned aerial vehicle (UAV) is a challenging task in photogrammetry, computer vision, and robotics. This paper presents a novel real-time monocular SLAM solution for UAV applications. It is based on two steps: consecutive construction of the UAV path, and adjacent strip connection. Consecutive construction rapidly estimates the UAV path by sequentially connecting incoming images to a network of connected images. A multilevel pyramid matching is proposed for this step that contains a sub-window matching using high-resolution images. The sub-window matching increases the frequency of tie points by propagating locations of matched sub-windows that leads to a list of high-frequency tie points while keeping the execution time relatively low. A sparse bundle block adjustment (BBA) is employed to optimize the initial path by considering nuisance parameters. System calibration parameters with respect to global navigation satellite system (GNSS) and inertial navigation system (INS) are optionally considered in the BBA model for direct georeferencing. Ground control points and checkpoints are optionally included in the model for georeferencing and quality control. Adjacent strip connection is enabled by an overlap analysis to further improve connectivity of local networks. A novel angular parametrization based on spherical rotation coordinate system is presented to address the gimbal lock singularity of BBA. Our results suggest that the proposed scheme is a precise real-time monocular SLAM solution for a UAV.Peer reviewe

    Tree Species Classification of Drone Hyperspectral and RGB Imagery with Deep Learning Convolutional Neural Networks

    Get PDF
    Interest in drone solutions in forestry applications is growing. Using drones, datasets can be captured flexibly and at high spatial and temporal resolutions when needed. In forestry applications, fundamental tasks include the detection of individual trees, tree species classification, biomass estimation, etc. Deep neural networks (DNN) have shown superior results when comparing with conventional machine learning methods such as multi-layer perceptron (MLP) in cases of huge input data. The objective of this research is to investigate 3D convolutional neural networks (3D-CNN) to classify three major tree species in a boreal forest: pine, spruce, and birch. The proposed 3D-CNN models were employed to classify tree species in a test site in Finland. The classifiers were trained with a dataset of 3039 manually labelled trees. Then the accuracies were assessed by employing independent datasets of 803 records. To find the most efficient set of feature combination, we compare the performances of 3D-CNN models trained with hyperspectral (HS) channels, Red-Green-Blue (RGB) channels, and canopy height model (CHM), separately and combined. It is demonstrated that the proposed 3D-CNN model with RGB and HS layers produces the highest classification accuracy. The producer accuracy of the best 3D-CNN classifier on the test dataset were 99.6%, 94.8%, and 97.4% for pines, spruces, and birches, respectively. The best 3D-CNN classifier produced ~5% better classification accuracy than the MLP with all layers. Our results suggest that the proposed method provides excellent classification results with acceptable performance metrics for HS datasets. Our results show that pine class was detectable in most layers. Spruce was most detectable in RGB data, while birch was most detectable in the HS layers. Furthermore, the RGB datasets provide acceptable results for many low-accuracy applications.Peer reviewe

    Real-time recognition of sows in video : A supervised approach

    Get PDF
    This paper proposes a supervised classification approach for the real-time pattern recognition of sows in an animal supervision system (asup). Our approach offers the possibility of the foreground subtraction in an asup’s image processing module where there is lack of statistical information regarding the background. A set of 7 farrowing sessions of sows, during day and night, have been captured (approximately 7 days/sow), which is used for this study. The frames of these recordings have been grabbed with a time shift of 20 second. A collection of 215 frames of 7 different sows with the same lighting condition have been marked and used as the training set. Based on small neighborhoods around a point, a number of image local features are defined, and their separability and performance metrics are compared. For the classification task, a feed-forward neural network (NN) is studied and a realistic configuration in terms of an acceptable level of accuracy and computation time is chosen. The results show that the dense neighborhood feature (d.3x3) is the smallest local set of features with an acceptable level of separability, while it has no negative effect on the complexity of NN. The results also confirm that a significant amount of the desired pattern is accurately detected, even in situations where a portion of the body of a sow is covered by the crate’s elements. The performance of the proposed feature set coupled with our chosen configuration reached the rate of 8.5 fps. The true positive rate (TPR) of the classifier is 84.6%, while the false negative rate (FNR) is only about 3%. A comparison between linear logistic regression and NN shows the highly non-linear nature of our proposed set of features.Peer reviewe

    Accurate Calibration Scheme for a Multi-Camera Mobile Mapping System

    Get PDF
    Mobile mapping systems (MMS) are increasingly used for many photogrammetric and computer vision applications, especially encouraged by the fast and accurate geospatial data generation. The accuracy of point position in an MMS is mainly dependent on the quality of calibration, accuracy of sensor synchronization, accuracy of georeferencing and stability of geometric configuration of space intersections. In this study, we focus on multi-camera calibration (interior and relative orientation parameter estimation) and MMS calibration (mounting parameter estimation). The objective of this study was to develop a practical scheme for rigorous and accurate system calibration of a photogrammetric mapping station equipped with a multi-projective camera (MPC) and a global navigation satellite system (GNSS) and inertial measurement unit (IMU) for direct georeferencing. The proposed technique is comprised of two steps. Firstly, interior orientation parameters of each individual camera in an MPC and the relative orientation parameters of each cameras of the MPC with respect to the first camera are estimated. In the second step the offset and misalignment between MPC and GNSS/IMU are estimated. The global accuracy of the proposed method was assessed using independent check points. A correspondence map for a panorama is introduced that provides metric information. Our results highlight that the proposed calibration scheme reaches centimeter-level global accuracy for 3D point positioning. This level of global accuracy demonstrates the feasibility of the proposed technique and has the potential to fit accurate mapping purposes

    Review on Active and Passive Remote Sensing Techniques for Road Extraction

    Get PDF
    Digital maps of road networks are a vital part of digital cities and intelligent transportation. In this paper, we provide a comprehensive review on road extraction based on various remote sensing data sources, including high-resolution images, hyperspectral images, synthetic aperture radar images, and light detection and ranging. This review is divided into three parts. Part 1 provides an overview of the existing data acquisition techniques for road extraction, including data acquisition methods, typical sensors, application status, and prospects. Part 2 underlines the main road extraction methods based on four data sources. In this section, road extraction methods based on different data sources are described and analysed in detail. Part 3 presents the combined application of multisource data for road extraction. Evidently, different data acquisition techniques have unique advantages, and the combination of multiple sources can improve the accuracy of road extraction. The main aim of this review is to provide a comprehensive reference for research on existing road extraction technologies.Peer reviewe

    Accurate Calibration Scheme for a Multi-Camera Mobile Mapping System

    Get PDF
    Mobile mapping systems (MMS) are increasingly used for many photogrammetric and computer vision applications, especially encouraged by the fast and accurate geospatial data generation. The accuracy of point position in an MMS is mainly dependent on the quality of calibration, accuracy of sensor synchronization, accuracy of georeferencing and stability of geometric configuration of space intersections. In this study, we focus on multi-camera calibration (interior and relative orientation parameter estimation) and MMS calibration (mounting parameter estimation). The objective of this study was to develop a practical scheme for rigorous and accurate system calibration of a photogrammetric mapping station equipped with a multi-projective camera (MPC) and a global navigation satellite system (GNSS) and inertial measurement unit (IMU) for direct georeferencing. The proposed technique is comprised of two steps. Firstly, interior orientation parameters of each individual camera in an MPC and the relative orientation parameters of each cameras of the MPC with respect to the first camera are estimated. In the second step the offset and misalignment between MPC and GNSS/IMU are estimated. The global accuracy of the proposed method was assessed using independent check points. A correspondence map for a panorama is introduced that provides metric information. Our results highlight that the proposed calibration scheme reaches centimeter-level global accuracy for 3D point positioning. This level of global accuracy demonstrates the feasibility of the proposed technique and has the potential to fit accurate mapping purposes

    Multitemporaalisen hyper- ja multispektrisen UAV kuvauksen käyttö kuusen kaarnakuoriaistuhoissa

    Get PDF
    Various biotic and abiotic stresses are threatening forests. Modern remote sensing technologies provide powerful means for monitoring forest health, and provide a sustainable basis for forest management and protection. The objective of this study was to develop unmanned aerial vehicle (UAV) based spectral remote sensing technologies for tree health assessment, particularly, for detecting the European spruce bark beetle (Ips typographus L.) attacks. Our focus was to study the early detection of bark beetle attack, i.e. the “green attack” phase. This is a difficult remote sensing task as there does not exist distinct symptoms that can be observed by the human eye. A test site in a Norway spruce (Picea abies (L.) Karst.) dominated forest was established in Southern-Finland in summer 2019. It had an emergent bark beetle outbreak and it was also suffering from other stress factors, especially the root and butt rot (Heterobasidion annosum (Fr.) Bref. s. lato). Altogether seven multitemporal hyper- and multispectral UAV remote sensing datasets were captured from the area in August to October 2019. Firstly, we explored deterioration of tree health and development of spectral symptoms using a time series of UAV hyperspectral imagery. Secondly, we trained assessed a machine learning model for classification of spruce health into classes of “bark beetle green attack”, “root-rot”, and “healthy”. Finally, we demonstrated the use of the model in tree health mapping in a test area. Our preliminary results were promising and indicated that the green attack phase could be detected using the accurately calibrated spectral image data.Peer reviewe
    corecore